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Abstract
We derive exact solitonic solutions of a class of Gross–Pitaevskii equations
with a time-dependent harmonic trapping potential and interatomic interaction.
We find families of exact single-solitonic, multi-solitonic and solitary wave
solutions. We show that, with the special case of an oscillating trapping
potential and interatomic interaction, a soliton can be localized indefinitely at
an arbitrary position. The localization is shown to be experimentally possible
for sufficiently long time even with only an oscillating trapping potential and a
constant interatomic interaction.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The experimental realization of solitons in Bose–Einstein condensates [1–6] has stimulated
intense interest in their properties [7–15]. The inhomogeneity provided by the trapping
potential has renewed the old [16–20] and more recent [21] interest in the different aspects of
one- and multi-soliton dynamics in inhomogeneous potentials.

In the experiments of [5, 4], stable bright solitons were created and set in a particle-like
center-of-mass motion. The wave nature of solitons was revealed when two adjacent solitons
repelled each other as a result of their phase difference [9]. On the other hand, it is established
that bright solitons collapse when the number of atoms exceeds a certain limit [22]. This
results from the attractive Hartree energy overcoming the repulsive kinetic energy pressure.
One of the methods proposed to stabilize the soliton against collapsing is to rapidly oscillate the
interatomic interaction or the trapping potential [23]. Obviously, the inhomogeneity imposed
by the trapping potential plays an important role on the dynamics and stability of solitons.
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The evolution of solitons is approximately described by the inhomogeneous nonlinear
Schrödinger equation known as the Gross–Pitaeviskii equation [24, 25]. The approximation
stems from the fact that the Gross–Pitaevskii equation is a mean-field approximation of
the exact N-particle Schrödinger equation. While in some cases the soliton dynamics
obtained by these two equations disagree [26], the Gross–Pitaevskii equation often gives
accurate results. Theoretical studies performed to account for the observed behavior of
solitons were conducted by solving the Gross–Pitaevskii equation with numerical, perturbative
or variational methods. Much less effort was devoted to finding exact solutions of this
equation [18, 27–34]. In addition to providing rigorous insight, exact solutions acquire
valuable importance when problems such as soliton–soliton collisions and soliton interaction
with potentials are addressed. In such cases, formulae for the force between solitons or
soliton’s effective mass can be derived [35]. In addition, obtaining such exact solutions
allows for testing the validity of the Gross–Pitaevskii equation at high soliton densities and
obtaining the long-time evolution of the soliton where numerical techniques aught to break
down.

Here, we further explore exact solitonic solutions of the Gross–Pitaevskii equation.
Specifically, the goal of this paper is two-fold. First, we investigate the existence and
properties of solitonic solutions in the presence of a time-dependent trapping potential
and interatomic interaction. Second, we focus on the effect of an oscillating trapping
potential and interatomic interaction on the center-of-mass motion of the soliton. We
consider here only the case of attractive interatomic interactions which allows for bright
solitons.

The first goal is achieved by employing the Darboux transformation method [36] to derive
families of exact solitonic solutions of a class of Gross–Pitaevskii equations. It should be
noted that the main solution we derive here (equation (22)), which corresponds to a harmonic
expulsive potential, reproduces a special case of the general solution found by Serkin et
al corresponding to a combination of a harmonic and linear potentials [21]. Hence, the
significance of the first goal is mainly presenting a systematic method of generating exact
solutions.

For the second goal, we considered the special case of oscillating strengths of the harmonic
trapping potential and interatomic interaction. Interestingly enough, it turns out that such
oscillations not only stabilize the soliton against shrinking, but also make it possible to
localize it at an arbitrary position. This is the main result of this paper. The possibility of
localizing the soliton is then discussed from an experimental point of view. To that end,
we considered the nonintegrable, though experimentally simpler, case of only an oscillating
trapping potential and constant interatomic interaction. Here too, the soliton can be localized,
though not indefinitely as before. The long-time evolution shows that the soliton continues
to be trapped but will be oscillating around the minimum of the harmonic potential. For a
typical experimental setup, we show that the soliton can be localized around its initial position
for a time period of the order of, or even larger than, the lifetime of the soliton. The soliton
localization suggests a management mechanism for the soliton position and speed that may
have applications in various situations such as soliton–soliton collisions and soliton interaction
with potentials.

The rest of the paper is organized as follows. In the following section, we present
the general form of the Gross–Pitaevskii equation to be solved. In section 3, we use the
Darboux transformation method to derive the new solitonic solutions. We then discuss their
properties, dynamics and localization. In section 4, we discuss the experimental feasibility of
realizing soliton localization. We end in section 5 with a summary of our main results and
conclusions.
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2. The Gross–Pitaevskii equation

The Gross–Pitaevskii equation describing a Bose–Einstein condensate trapped by an axially
symmetric harmonic potential with attractive interatomic interactions is given by

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∇2

r +
1

2
m

(
ω2

xx
2 + ω2

⊥(y2 + z2)
) − 4πash̄

2

m
|ψ(r, t)|2

]
ψ(r, t), (1)

where as is the absolute value of the s-wave scattering length, and ωx and ω⊥ are the
characteristic frequencies of the harmonic trapping potential in the axial and radial directions,
respectively.

When the confinement of the Bose–Einstein condensate is much larger in the y- and
z-directions compared to the confinement in the x-direction, the system can be considered
effectively one-dimensional along the x-direction. The three-dimensional Gross–Pitaevskii
equation can then be integrated over the y- and z-directions to result in a one-dimensional
Gross–Pitaevskii equation [7, 37]

ih̄
∂

∂t
ψ(x, t) =

[
− h̄2

2m

∂2

∂x2
+

1

2
mω2

xx
2 − 2λas |ψ(x, t)|2

]
ψ(x, t), (2)

where λ = ω⊥/ωx . Scaling length to ax = √
h̄/mωx , time to 1/ωx , and ψ(x, t) to 1/

√
2λax ,

the Gross–Pitaevskii equation takes the dimensionless form

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+

1

2
p(t)x2 − aq(t)|ψ(x, t)|2

]
ψ(x, t), (3)

where a = as/ax is the scaled scattering length. The dimensionless general functions p(t)

and q(t) are introduced to account for the time dependencies of the strengths of the trapping
potential and the interatomic interaction.

In the following section, it is shown that this equation is integrable only if p(t) and q(t)

are parametrically related as follows: p(t) = γ̈ (t) − γ̇ (t)2 and q(t) = exp (γ (t)), where γ (t)

is an arbitrary real function (see equation (7)). We find exact solitonic solutions of equation
(3) below in terms of the function γ (t). A host of rich and interesting physical systems
are described by such a class of solutions. In particular, an oscillating form of γ (t) will be
considered in this paper.

3. Darboux transformation and the exact solutions

3.1. Darboux transformation

Applying the Darboux transformation method on nonlinear partial differential equations
requires finding a linear system of equations for an auxiliary field Ψ(x, t). The linear system
is usually written in a compact form in terms of a pair of matrices as follows: Ψx = U · Ψ
and Ψt = V ·Ψ. The matrices U and V, known as the Lax pair, are functionals of the solution
of the differential equation. The consistency condition of the linear system Ψxt = Ψtx is
required to be equivalent to the partial differential equation under consideration. Applying
the Darboux transformation, as defined below, on Ψ transforms it into another field Ψ[1].
For the transformed field Ψ[1] to be a solution of the linear system, the Lax pair must also
be transformed in a certain manner. The transformed Lax pair will be a functional of a new
solution of the same differential equation.

Practically, this is performed as follows. First, we find the Lax pair and an exact solution
of the differential equation, known as the seed solution. Fortunately, the trivial solution can
be used as a seed, leading to nontrivial solutions. Using the Lax pair and the seed solution, the
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linear system is then solved and the components of Ψ are found. The new solution is expressed
in terms of these components and the seed solution. The following detailed derivation of the
new solution clarifies this procedure further.

Using our Lax pair search method [38], we find the following linear system which
corresponds to the class of Gross–Pitaevskii equations we are interested in:

Ψx = ζJ · Ψ · 	 + U · Ψ, (4)

Ψt = iζ 2J · Ψ · 	 · 	 + ζ (iU + xγ (t)J) ·Ψ · 	 + V · Ψ, (5)

where

Ψ(x, t) =
(

ψ1(x, t) ψ2(x, t)

φ1(x, t) φ2(x, t)

)
, J =

(
1 0
0 −1

)
,

	 =
(

λ1 0
0 λ2

)
, U =

(
0

√
aQ(x, t)

−√
aQ∗(x, t) 0

)
,

V =
(

ia|Q(x, t)|2/2
√

aλxγ̇Q(x, t) + i
√

aQx(x, t)/2
−√

aλxγ̇Q∗(x, t) + i
√

aQ∗
x(x, t)/2 −ia|Q(x, t)|2/2

)
,

ζ(t) = exp (γ (t)), and λ1 and λ2 are arbitrary constants. For convenience, we presented
the matrices in terms of the function Q(x, t) which is related to the wavefunction as follows
Q(x, t) = ψ(x, t)e(γ (t)+iγ̇ (t)x2)/2.

It should be emphasized that while applying the Darboux transformation is almost
straightforward, finding a linear system that corresponds to the differential equation at hand
is certainly not a trivial matter. Usually, this is found by trial and error, or by starting from
a certain linear system and then finding the differential equation it corresponds to. In [38],
we have introduced a systematic approach to find the linear system which we describe here
briefly. The partial derivatives of the auxiliary field, Ψx and Ψt , are expanded in powers
of Λ with unknown matrix coefficients. The expansions are terminated at the first order for
Ψx and the second order for Ψt since this will be sufficient to generate the class of Gross–
Pitaevskii equations under consideration. The higher order matrix coefficients turn out to be
essentially determined by the zeroth-order matrix coefficients U and V. To find the matrices
U and V, we expand them in powers of the wavefunction ψ(x, t), its complex conjugate, and
their partial derivatives. The coefficients of the expansions are unknown functions of x and
t. Substituting these expansions in the consistency condition (equation (6) below) we find a
set of equations for the unknown function coefficients. Finally, by solving these equations the
Lax pair and consequently the linear system will be determined. The linear system found here
is a generalization to that of Zakharov–Shabat for homogeneous Gross–Pitaevskii equation
[39].

For � to be a solution of both equations (4) and (5), the consistency condition �xt = �tx

must be satisfied. This condition leads to the following relation between the matrices U
and V:

Ut − Vx + [U, V] = 0, (6)

where [U, V] is the commutator of U and V. Substituting the above expressions for U and V
in the last equation, we obtain the Gross–Pitaevskii equation

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+

1

2

(
γ̈ (t) − γ̇ (t)2) x2ψ(x, t) − aeγ (t)|ψ(x, t)|2

]
ψ(x, t), (7)

and its complex conjugate. This equation shows that the functions p(t) and q(t) are
parametrically related to each other through the general function γ (t). In [21], Serkin et al
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solve a nonautonomous Gross–Pitaevskii equation that is similar to equation (7) but with
additional time-dependent dispersion and linear potential. Similar to our conclusion [38], the
authors of this reference and [34] found that relations between the coefficients must be obeyed
for the model to be integrable. We focus here on the specific case of only a harmonic trapping
potential and constant dispersion. The linear system of eight equations, equations (4) and (5),
read explicitly

ψ1x − φ1
√

ae
1
2 (iγ̇ x2+γ )ψ0 −

√
2λ1ψ1e

γ = 0, (8)

ψ2x − φ2
√

ae
1
2 (iγ̇ x2+γ )ψ0 −

√
2λ2ψ2e

γ = 0, (9)

φ1x +
√

2λ1e
γ φ1 + ψ∗

0 ψ1
√

ae
1
2 (γ−ix2γ̇ ) = 0, (10)

φ2x +
√

2λ2e
γ φ2 + ψ∗

0 ψ2
√

ae
1
2 (γ−ix2γ̇ ) = 0, (11)

ψ1t − iψ1e
γ

(
2eγ λ2

1 − i
√

2xγ̇ λ1 +
1

2

∣∣ψ0

∣∣2 a

)

− 1

2
φ1

√
ae

1
2 (iγ̇ x2+γ )

(
iψ0x + ψ0

(
2i

√
2eγ λ1 + xγ̇

))
= 0, (12)

ψ2t − iψ2e
γ

(
2eγ λ2

2 − i
√

2xγ̇ λ2 +
1

2

∣∣ψ0

∣∣2 a

)

− 1

2
φ2

√
ae

1
2 (iγ̇ x2+γ )

(
iψ0x + ψ0

(
2i

√
2eγ λ2 + xγ̇

))
= 0, (13)

φ1t +
1

2
ψ1

√
ae

1
2 (γ−ix2γ̇ )

(
ψ∗

0

(
2i

√
2eγ λ1 + xγ̇

)
− iψ∗

0x

)

+
1

2
φ1e

γ
(
i|ψ0|2a + 2λ1

(
2ieγ λ1 +

√
2xγ̇

))
= 0, (14)

φ2t +
1

2
ψ2

√
ae

1
2 (γ−ix2γ̇ )

(
ψ∗

0

(
2i

√
2eγ λ2 + xγ̇

)
− iψ∗

0x

)

+
1

2
φ2e

γ
(
i|ψ0|2a + 2λ2

(
2ieγ λ2 +

√
2xγ̇

))
= 0, (15)

where ψ0(x, t) is an exact seed solution of equation (7). These equations reduce to an
equivalent system of four equations with nontrivial solutions by making the following
substitutions: λ1 = −λ∗

2, ψ2 = φ∗
1 and φ2 = −ψ∗

1 . Using the trivial solution, ψ0(x, t) = 0,
as a seed, the linear system will have the solution

ψ1(x, t) = c1e2iλ2
1

∫
e2γ (t)dt+eγ (t)λ1x, (16)

φ2(x, t) = c2e−2iλ2
1

∫
e2γ (t)dt−eγ (t)λ1x, (17)

where c1 and c2 are real arbitrary constants of integration.
Consider the following version of the Darboux transformation [36]:

�[1] = � · Λ − σ�, (18)

where �[1] is the transformed field, σ = �0 · Λ · �0
−1. Here �0 is a known (seed) solution

of the linear system equations (8)–(15). For the transformed field �[1] to be a solution of the
linear system, the matrix U for instance must be transformed as1

U[1] = σ · U · σ−1 + σx · σ−1, (19)

1 Since the new solution can already be extracted from equation (19), there is no need to write the more complicated
equation for V[1] which leads to the same result.
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where σ−1 is the inverse of σ . This equation gives the new solution in terms of the seed
solutions of the Gross–Pitaevskii equation, ψ0(x, t), and the linear system, �0, which reads

ψ(x, t) = ψ0(x, t) +
2

a
(λ1 + λ∗

1)e
−iγ̇ (t)x2/4+γ (t)/2 φ1ψ

∗
1

|φ1|2 + |ψ1|2 . (20)

3.2. Exact single-solitonic solution

Using ψ0(x, t) = 0 and equations (16) and (17), the new solution takes the form

ψ(x, t) = 4
√

2λ1rc1c2
∗

√
a

eγ (t)/2+iθ(t)

|c1|2eβ(t)x−x0(t) + |c2|2e−(β(t)x−x0(t))
, (21)

where θ(t) = −4(λ1i
2 − λ1r

2)
∫

e2γ (t)dt+x(2eγ (t)λ1i − xγ̇ (t)/
√

8), β(t) = 2
√

2λ1re
γ (t), and

x0(t) = 8λ1iλ1r

∫
e2γ (t)dt . Here c1, c2, λ1 and λ2 are arbitrary constants. The subscripts r and i

denote real and imaginary parts, respectively. Substituting c1 = exp (δ1), c2 = exp (δ2), where
δ1 and δ2 are arbitrary constants, completing the square in the phase factor, and normalizing
ψ(z, t) to N, this solution can be recast in the following more appealing form:

ψ(x, t) =
√

N
√

Na

2
eγ (t)/2+iφ(x,t)sech

(
Na

2
eγ (t)(x − xcm(t))

)
, (22)

where

φ(x, t) = φ0(t) + ẋcm(t)(x − xcm(t)) − 1

2
γ̇ (t)(x − xcm(t))2, (23)

xcm(t) = (
x0e2γ (0) + (v0 + x0γ̇ (0)) g(t)

)
e−γ (t)−γ (0), (24)

φ0 = c3 − 1

2
γ̇ (t)2xcm(t)2 +

1

2

(
1

4
(aN)2 + e−2γ (0) (v0 + x0γ̇ (0))2

)
g(t), (25)

g(t) = ∫ t

0 e2γ (t ′)dt ′. The constant c3 corresponds to an arbitrary overall phase.
This solution corresponds to a sech-shaped soliton containing N atoms with a time-

dependent center of mass xcm(t) and time-dependent width 2 exp(−γ t)/Na. The linear
part of the phase profile shows that the soliton is moving with a center-of-mass velocity
v(t) = ẋcm(t). The quadratic part corresponds to a phase chirp associated with the quadratic
trapping potential.

The simple choice γ (t) = constant, which corresponds to the homogeneous Gross–
Pitaevskii equation, gives xcm(t) = v0t + x0. The solitonic solution in this case corresponds to
the well-known sech-shaped soliton with a center-of-mass moving with a constant velocity v0

and starting the motion at the initial position x0. In the limit γ (t) → 0, the solution, equation
(22), reduces to

ψ(x, t) =
√

N
√

Na

2
eiφ(t)sech

(
Na

2
(x − (x0 + v0t))

)
, (26)

where φ(t) = c3 + ((aN)2 + 4v2
0)t/8 + v0 (x − (x0 + v0t)). This is the well-known sech

solution of the homogeneous Gross–Pitaevskii equation. For γ (t) = constant × t we get a
Gross–Pitaevskii equation with an expulsive harmonic potential and exponentially growing
interatomic interaction [30]. In principle, we can choose any form of γ (t), but one should
keep in mind that the interatomic interaction strength is proportional to exp (γ (t)). Such a
time dependence may not be realistic from an experimental point of view for any γ (t).
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In [21] Serkin et al have already derived the exact solitonic solution of a Gross–Pitaevskii
equation with a linear and quadratic potentials and time-dependent dispersion

i
∂

∂t
ψ(x, t) =

[
−D(t)

2

∂2

∂x2
− �2(t)

2
x2 − 2α(t)x − aR(t)|ψ(x, t)|2

]
ψ(x, t). (27)

The authors show that this equation is integrable only if the functions D(t),�(t) and R(t)

are related to each other through the integrability condition (equation (2) in [21]). The special
case of only a quadratic potential and constant dispersion corresponds to the Gross–Pitaevskii
equation considered in this paper. Substituting α(t) = 0 and D(t) = 1 in equation (2) of [21],
the integrability condition simplifies to �2 = −γ̇ 2 + γ̈ , which shows that, in this special case,
the previous equation is indeed equivalent to equation (7). Therefore, substituting α(t) = 0 and
D(t) = 1 in the general solution of equation (27), namely equation (8) in [21], should result in
our solution, equation (22). It turns out, however, that the two solutions do not match exactly.
The solution of [21] corresponds to a soliton located initially at x = 0 while in our case the
soliton is located initially at the arbitrary position x0. This can be clearly seen by substituting,
without loss of generality, η(t) = Na exp(γ (t))/4 and κ(t) = −v0 exp(−γ (0))/2 in the
argument of the sech function of equation (8) of [21]. This results in a center-of-mass
coordinate xcm(t) = v0g(t)e−γ (t)−γ (0). Since g(0) = 0, this shows that xcm(0) = 0 in contrast
with our case xcm(0) = x0.

The dynamics of the soliton is readily given by equation (24). An equation of motion
for the center of mass xcm(t) can be derived from the Euler’s equation of the Lagrangian
L[xcm, ẋcm] = ∫ ∞

−∞ idxψ∗∂ψ/∂t − E[xcm, ẋcm]. The energy functional is given by

E[xcm, ẋcm]

=
∫ ∞

−∞
ψ∗(x, t)

[
−1

2

∂2

∂x2
+

1

2
(γ̈ (t) − γ̇ (t)2)x2 − 1

2
aeγ (t)|ψ(x, t)|2

]
ψ(x, t), (28)

which results in the equation of motion

ẍcm(t) + (γ̈ − γ̇ 2)xcm(t) = 0. (29)

This equation shows that the center-of-mass motion is determined by the function γ (t). Thus,
interatomic interactions do not affect the center-of-mass motion which is a manifestation of
Kohn’s theorem [40].

3.3. Oscillating trapping potential

In this section, we consider an oscillating form of γ (t) which results in a trapping potential
and interatomic interaction with oscillating strengths. A first simple choice for γ (t) would
be for instance cos (ωt + δ). However, in this case, the interatomic interaction, which will
be proportional to exp (cos ωt + δ), oscillates nonlinearly. Such a time-dependent interatomic
interaction may not be possible to realize experimentally. Instead, we use the form

γ (t) = 1

2
(α1 + α2 cos (ωt + δ)), (30)

where α1, α2, ω and δ are arbitrary dimensionless constants. In this case, the Gross–Pitaevskii
equation, equation (7), takes the form

i
∂ψ(x, t)

∂t
=

[
− 1

2

∂2

∂x2
− 1

4
α2ω

2

(
cos (ωt + δ) +

1

2
α2 sin (ωt + δ)2

)
x2

− ae(α1+α2 cos (ωt+δ))/2|ψ(x, t)|2
]
ψ(x, t). (31)
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The advantage of this particular form of γ (t) is that, for α2 	 1, the amplitude of the
oscillation in the interatomic interaction can be set to an arbitrarily small value such that the
strength of the interatomic interaction can be considered practically as constant. Substituting
this expression for γ (t) in equation (29), we get

ẍcm − 1

4
α2ω

2 (
2 cos (ωt + δ) + α2 sin (ωt + δ)2) xcm = 0. (32)

The general solution of this equation is readily given by equation (24), which now takes the
form

xcm(t) = x0e
α2
2 (cos δ−cos (ωt+δ)) +

(
v0 − 1

2
x0α2ω sin δ

)
e− α2

2 (cos δ+cos (ωt+δ))

∫ t

0
dt ′eα2 cos (ωt ′+δ). (33)

The first term of this equation corresponds to a bounded oscillation, but the presence of the
integral in the second term makes xcm(t) unbounded. Due to this term, the soliton will be
expelled out of the trap, i.e., xcm(t → ∞) = ±∞. Therefore, the soliton can be localized, by
choosing the parameters such that the prefactor of the unbounded term vanishes, namely

v0 = 1

2
x0α2ω sin δ. (34)

With this condition, the center of mass of the soliton is given by

xcm(t) = x0e
α2
2 (cos δ−cos (ωt+δ)). (35)

This is one of the main conclusions of this paper. It shows that the soliton can be localized at
an arbitrary position by oscillating the strength of the trapping potential and the interatomic
interaction. Without such oscillations, the soliton will be expelled out of the trap. In fact,
this result also holds for any bounded type of oscillations as can be inferred from equation
(24). Taking v0 + x0γ̇ (0) = 0, this equation gives xcm(t) = x0eγ (0)−γ (t), which is bounded for
any bounded γ (t). The different cases of soliton localization and delocalization, described by
equation (33), are shown in figures 1 and 2. In figure 1, the soliton is shown to be expelled out
of the left (right) side of the trap when v0 < x0α2ω sin (δ)/2 (v0 > x0α2ω sin (δ)/2), while
for v0 = x0α2ω sin (δ)/2, the soliton remains localized around its initial position x0. In figure
2, this is shown with the trajectory of the center of mass of the soliton.

Note that in order to localize the soliton, no condition on ω was required. Therefore, one
may argue that by taking ω arbitrarily small, we get a localized soliton in an almost stationary
expulsive harmonic trap. This of course contradicts the fact that in an expulsive harmonic
trap, solitons are expelled away from the center. However, one should keep in mind that with
our special form of γ (t), namely equation (30), the strength of the trapping potential will be
proportional to ω2. Therefore, a very small value of ω corresponds to a shallow potential
that approaches the homogeneous case for ω = 0. The fact that the strength of the harmonic
potential depends on ω leads to conclude that, for deep traps, larger trap oscillations frequency
are needed to localize the soliton contrary to the case with shallow traps where the soliton can
be localized with smaller trap oscillations frequency.

Taking the time average of the trapping potential (ω/2π)
∫ 2π/ω

0 dt (γ̈ (t) − γ̇ (t)2)x2/2 =
−α2

2ω
2x2/16 shows that the soliton spends on the average more time in the expulsive trapping

potential. One may thus conclude that after sufficiently long time the soliton will be expelled
out of the trap which contradicts our previous localization result. A careful examination of the
dynamics shows that this conclusion is incorrect. In spite of the fact that the soliton spends
more time in the expulsive trap, the inhomogeneity of the trapping potential can compensate
for the time difference. The strength of the trapping potential has in general two periods τ1

and τ2, as shown in figure 3. The period τ1 depends on α2 and τ2 = 2π/ω. The strength
of the trapping potential is positive for a period of τ1 and negative for τ2 − τ1 > τ1 for all
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Figure 1. Soliton’s density profile (solid curve) and trapping potential (dashed curve). First
column of subfigures: v0 = 0.8 × x0α2ω sin (δ)/2 = 8.4. Middle column of subfigures:
v0 = x0α2ω sin (δ)/2 = 10.5. Last column of subfigures: v0 = 1.2 × x0α2ω sin (δ)/2 = 12.6.
For the three cases, we take α1 = 1, α2 = 0.5, ω = 2, δ = 1 and x0 = 50. Time is in units of
1/ωx .

α2. Assuming the soliton started the motion at x0 > 0 from rest, it will experience at first a
harmonic trapping potential for time τ1 and therefore will move to the left (region of lower
potential) for a certain distance. At time τ1, the trapping potential becomes expulsive for time
period τ2 − τ1 and the soliton starts to return back. However, it starts now from a point of
lower potential than at x0 which means that it will experience a weaker trapping potential.
Therefore, in order to reach the starting point, x0, it needs more time compared to the forward
part of the motion. If that time matches τ2 −τ1, the soliton returns back to x0 with zero velocity
and the cycle repeats leading to trapping of the soliton, which corresponds to the middle curve
of figure 2. On the other hand, if the soliton reaches a point x > x0, it will be eventually
expelled out of the right side of the trap corresponding to the upper curve of figure 2, and if it
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Figure 2. Soliton’s center-of-mass trajectory for three values of the initial velocity. The upper
curve corresponds to v0 = 1.2 × x0α2ω sin (δ)/2 = 12.6, the middle curve corresponds to
v0 = x0α2ω sin (δ)/2 = 10.5 and the lower curve corresponds to v0 = 0.8×x0α2ω sin (δ)/2 = 8.4.
For the three curves, we take α1 = 1, α2 = 0.5, ω = 2, δ = 1 and x0 = 50.
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Figure 3. Strength of the trapping potential versus time. The following values were used:
α1 = 1, α2 = 0.75, ω = π, δ = 1.2.

reaches x < x0, it will be expelled out of the left side of the trap corresponding to the lower
curve of figure 2.

To further understand this trapping mechanism, we calculated the trapping potential felt by
the soliton through its trajectory, namely V (xcm(t)), which is plotted in figure 4. In this figure,
the dynamics of the soliton is represented by a point moving on the curve with a direction that
is indicated on each curve. The center-of-mass motion of figure 2 can be extracted by tracing
xcm(t) while the point moves along the potential curves. In figure 4(a), the soliton starts at
x0 = 50 with initial velocity v0 = 1.2α2x0ω sin (δ)/2. In this case, the soliton gets drifted
by time toward larger values of xcm corresponding to the upper curve of figure 1. In figure
4(c), the initial velocity is v0 = α2x0ω sin (δ)/2, which results in soliton localization. In this
subfigure, the soliton oscillates between xcm = 50 and xcm = 61 corresponding to the middle
curve of figure 2. In figure 4(e), the initial velocity is v0 = 0.8α2x0ω sin (δ)/2 leading to a drift
toward lower values of xcm corresponding to the lower curve of figure 2. To make an analogy
with a classical particle moving in a time-independent potential, we defined Veff(xcm(t)) =
V (xcm(t)) − [V (xcm(π/ω)) − V (xcm(0))][xcm(t) − xcm(0)]/[xcm(π/ω) − xcm(0)]. In figures
4(b), (d), (f ), we plot Veff(xcm) that corresponds to figures 4(a), (c), (e), respectively. The
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Figure 4. First column: the trapping potential V (xcm(t)). Second column: the effective trapping
potential V (xcm(t)). (a) and (b) correspond to, v0 = 1.2α2x0ω sin (δ)/2, (c) and (d) correspond
to, v0 = α2x0ω sin (δ)/2, (e) and (f ) correspond to, v0 = 0.8α2x0ω sin (δ)/2. For all curves:
x0 = 50, α1 = 1, α2 = 0.2, δ = 0.4, and ω = π . The arrows show the direction of the motion of
the soliton.

dynamics is now simplified to that of a classical particle oscillating in a ladder of parabolic
potentials. For the nonlocalized soliton, the potential minimum is shifted by time to the right
(figure 4(b)) or to the left (figure 4(f )). For the localized soliton case, the minimum of the
potential is stationary.

3.4. Another family of exact solutions

Using the exact solution found above as a seed solution, the Darboux transformation generates
a two-solitons solution. This kind of solution is useful for studying soliton–soliton interactions
which is left for future work. Another family of more complicated exact solitonic solutions
can be obtained by using a nontrivial seed solution as shown in appendix A. Substituting for
γ (t) in equation (A.2), we get the second class of exact solutions. This family of solutions
is more complicated than the above single-solitonic solution since it involves, in addition to
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Figure 5. Left: spatiotemporal contour plot of soliton density profile. Right: soliton density
profile at t = 0. The values of the parameters used in this plot are: c1 = −c2 = 10, c3 = c4 =
1, λ1i = λ1r = 1, A = 2, a = 0.9, k0 = 5, λ = ω = 1, δ = 0, α1 = −6, α2 = 0.3. The value of
k0 is the solution of α = 0 with respect to k0.

the single-solitonic solutions, multi-solitonic and solitary wave solutions. Here, we present
briefly the main properties of the solutions of this kind. In figure 5, we plot the density of
a single-solitonic solution showing that the soliton is being expelled out of the center of the
trap. The oscillation in the trajectory of the soliton is due to the oscillating trapping potential.
The discontinuous appearing of the soliton is due to the interaction with the background. This
trajectory can also be extracted from the general solution, equation (A.2), by considering the
term (�c2

1e2αη−√
η̇�rx + �c2

2e−2αη+
√

η̇�rx) in the denominator. At the soliton’s density peak this
is the dominant term that determines the position of the soliton. Specifically, the position of
the peak is given by the condition 2αη − √

η̇�rx = 0. Using this condition to plot x versus t
in figure 6, we obtain a curve that is identical to the soliton trajectory in figure 5. The mean
slope of this curve is proportional to α/2�r . Hence, the rate at which the soliton leaves the
center of the trapping potential can be delayed by choosing the parameters and the arbitrary
constants such that α/2�r is small. For the special case of α = 0 the center of mass of the
soliton will be localized at x = 0 indefinitely. In this case, the oscillating trapping potential
results only in oscillations in the width and peak density of the soliton. This is also shown in
figure 7 where we see a multi-solitonic solution with central soliton being localized at x = 0
and off-central ones oscillating around their initial positions. In figure 8, we show that for
some values of the parameters the dynamics of the peak soliton density can be so drastic such
that the soliton disappears in the background and reappears at regular discrete times.

4. Numerical solution and experimental realization

As we have seen in section 3.3, there is a possibility of localizing the soliton by oscillating
the trapping potential and the interatomic interaction in the manner described by equation
(31). Such synchronized oscillations may not be possible to realize experimentally. Instead, a
setup with an oscillating strength of the trapping potential and constant interatomic interaction
may be experimentally more favorable. This situation can be obtained in our case with the
condition α2 	 1 resulting in the following Gross–Pitaevskii equation:

i
∂ψ(x, t)

∂t
=

[
− ∂2

∂x2
− 1

2
�2 cos (ωt + δ)x2 − a|ψ(x, t)|2

]
ψ(x, t), (36)
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Figure 6. Trajectory of the soliton’s peak density. The values of the parameters used here are the
same as those of figure 5.
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Figure 7. Density profile of a single soliton solution. The values of the parameters used in this
plot are: −c2 = c1 = 10, c3 = c4 = 1, λ1i = λ1r = 1, A = 2, a = 0.9, k0 ∼ 5.03, λ = ω =
1, δ = 0, α1 = −6, α2 = 0.3. The value of k0 is the solution of α = 0 with respect to k0.

where � = ω
√

α2/2 and we have set α1 = 0. We solve this equation numerically using the
exact solution of the homogeneous case, namely the solution of equation (36) with � = 0,
as the initial wavefunction. This can be obtained from equation (22) simply by substituting
α1 = α2 = 0. The soliton’s center-of-mass trajectory is extracted from the resulting numerical
solution and then plotted versus time as shown in figure 9. The trajectory is shown with
the filled circles for ω = 2 and � = 0.44 and with the empty circles for ω = 2 and
� = 0.14. It is clear from this figure that with smaller amplitude of the oscillating trapping
potential, the soliton will be localized for longer periods. The solid and dashed curves show
the corresponding trajectories in the presence of the oscillating interatomic interaction as
described by equation (33). The difference between the solid and filled circle curves shows
the important role played by the oscillations in the interatomic interactions in stabilizing the
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Figure 8. Density profile of a multi-soliton solution. The values of the parameters used in this
plot are: −c2 = c1 = 10, c3 = c4 = 1, λ1i = 0, λ1r = 1, A = 2, a = 0.9, k0 = 0, λ = 1, ω =
0.01, δ = 0, α1 = −2, α2 = 0.3.
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Figure 9. Soliton’s center-of-mass trajectory. The solid and dashed curves correspond to the exact
formula equation (24). Empty and filled circles correspond to the numerical solution of equation
(36). Solid curve and filled circles are obtained with � = ω

√
α2/2 = 0.44ωx and dashed curve

and empty circles are obtained with � = ω
√

α2/2 = 0.14ωx . The rest of parameters used are:
a = 10−4, δ = v0 = 0, x0 = 5, α1 = 1, N = 4 × 103, α2 = 0.1 for the solid curve and α2 = 0.01
for the dashed curve.

soliton. On the other hand, the overlap between the dashed and open circle curves shows that
the effect of interatomic interactions is minor for smaller amplitudes of the oscillation in the
trapping potential.

The exact center-of-mass dynamics of the solitonic solution of equation (36) is dictated,
according to Kohn’s theorem [40], by the potential − 1

2�2 cos (ωt + δ)x2 independently from
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Figure 10. Soliton’s center-of-mass trajectory. The solid and dashed curves correspond to the
exact formula equation (39). Empty and filled circles correspond to the numerical solution of
equation (36). All parameters used are the same as those of figure 9.

the interatomic interaction. Taking advantage of this fact, the equation of motion of the center
of mass follows:

ẍcm(t) − �2 cos (ωt + δ)xcm(t) = 0. (37)

The general solution of this equation is a linear combination of the sine and cosine Mathieu
functions

xcm(t) = c1C(0, α2, (ωt + δ)/2) + c2S(0, α2, (ωt + δ)/2), (38)

where c1 and c2 are arbitrary constants. Using the initial conditions xcm(0) = x0 and
ẋcm(0) = 0, the solution takes the form

xcm(t) = x0C(0, α2, (ωt + δ)/2)

C(0, α2, δ/2)
. (39)

This solution is plotted in figure 10, where we also plot the result of the numerical solution
of equation (36) for the same parameters. The agreement between the numerical and the
exact result is evident. The advantage of the exact analytical solution over the numerical one
is that we can investigate the long-time dynamics of the soliton. In figure 11, we plot the
center of mass of the soliton for a much longer time interval than in figures 9 and 10. This
figure shows that the soliton will be trapped over such a large time scale and is oscillating
between x0 and −x0. The frequency of this oscillation is given by the period of the Mathieu
function C(0, α2, (ωt + δ)/2). A numerical computation of the first root of this function for
different values of α2 and ω shows that this frequency is proportional to α2ω. The constant of
proportionality is determined numerically which results in ωP = 0.353α2ω. The fact that the
soliton is trapped by the oscillating harmonic potential is a well-established result for such a
configuration, known as Paul trap [41], which is used to trap cold ions (Hence, ωP denotes
the frequency of the Paul trap.).

To have realistic estimates of the parameters α1, α2 and ω, we consider the experiment
of Strecker et al [5]. In this experiment, solitons were created with a maximum number of
N = 50007 Li atoms per soliton. The solitons’ center of mass oscillated with amplitude
∼ 370 μm and period 310 ms. The strength of the harmonic trapping potential in the radial
direction ω⊥ = 2π ×800 rad s−1 was much larger than that of the axial direction ωx = 2π ×3

15



J. Phys. A: Math. Theor. 42 (2009) 265206 U Al Khawaja

0 50 100 150 200
6

4

2

0

2

4

6

xt

x c
m

t
a x

ω

Figure 11. The solid and dashed curves correspond to the exact formula equation (39). The two
curves are the same as those of figure 10 but shown here over a larger time interval. Extending the
time interval further shows that the dashed curve is also oscillatory.

rad s−1. In this case, the unit of length used in this paper is ax ≈ 2 μm and the unit of time
is 1/ωx ≈ 50 ms. Furthermore, for the 7 Li scattering length as ∼ 3a0 = 1.5 × 10−10 m, our
scaled scattering length is a = as/ax � 10−4. In view of these experimental values, figure 9
is explained as follows. The filled circles show a soliton located initially at 10 μm from the
trap center. Oscillating the trapping potential with frequency � = 0.44ωx � 2π × 1.3 rad
s−1, the soliton will be drifted a distance of 10 μm from its initial location in a time period
of 1.2 s. On the other hand, using a rather more gentle oscillation in the trapping potential,
namely with � = 0.14ωx � 2π × 0.4 rad s−1, the soliton will be nearly localized about its
initial position over the same time period.

The exact result, equation (33), indicates that the soliton can be trapped at any position
and with any trap frequency as long as the trapping potential and the interatomic interaction
are oscillating coherently. Furthermore, it shows that the soliton maintains its single-solitonic
structure irrespective of the robustness of the trap oscillation. In the present case, where
the interatomic interactions oscillation is turned off, the situation may be different. The
soliton looses the possibility of indefinite localization and may also loose its single-soliton
structure. Solving equation (36) for larger values of � and x0 shows that the soliton will
leave its initial position faster and gets fragmented into many solitons that collide and interfere
with each other. Therefore, localizing the soliton at larger distances while maintaining its
single-solitonic structure requires shallower traps.

5. Conclusions

Using the Darboux transformation method, we derived exact solitonc solutions of a class
of Gross–Pitaevskii equations represented by equation (7). The solutions are obtained for
a general time-dependent strength of the harmonic trapping potential and a related time-
dependent strength of the interatomic interaction. Two classes of exact solitonic solitions
were found. The first class represents a single soliton with an arbitrary phase, initial position
and initial velocity, as given by equation (22). The second class comprises single, multiple
and solitary wave solitonic solutions.
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As a specific case, we considered an oscillating trapping potential and interatomic
interaction, as given by equations (30) and (31). We found that the soliton can be localized at
an arbitrary position and for any amplitude and frequency of the oscillating trapping potential.
This localization is possible in spite of the asymmetric oscillation where the trapping potential
spends more time being expulsive. In such a case, one expects that by time the soliton
will be expelled out of the trap. It turns out, however, that the inhomogeneity in the trapping
potential has a balancing effect such that it becomes possible to localize the soliton indefinitely.
As a consequence of the previously mentioned approximate nature of the Gross–Pitaevskii
equation, the fact that our solutions have a δ-function center of mass is also approximate [42].
For finite number of atoms, the center of mass spreads which may lead to the delocalization
of the soliton. For small variations in the center of mass, the soliton is expected to remain
localized, but when the center of mass spreading is larger than the amplitude of the soliton
oscillation around its equilibrium point, we expect that localization disappears completely.

To discuss the experimental realization, we considered a simpler situation with an
oscillating trapping potential and constant interatomic interaction, as described by equation
(36). The numerical solution of this equation showed that soliton localization is possible but
for a finite time that can be controlled by the frequency and amplitude of the trapping potential
oscillation. It is shown that for the 7 Li experiment of Strecker et al [5], the soliton can be
localized for a time long enough to be observed. With smaller frequency and amplitude, the
localization time becomes even larger.

The Gross–Pitaevskii equation provides an accurate description of the dynamics of solitons
as long as finite-temperature effects are suppressed and atom losses are negligible [22]. At
finite temperatures and with atom losses, the soliton broadens and starts to loose it particle-like
behavior. When exposed to oscillations in the trapping potential, the soliton will, in this case,
be fragmented and soliton localization may not hold.

Using the localization mechanism, solitons can be prepared in arbitrary initial conditions.
This may be useful for studying soliton–soliton collisions or the interaction of solitons with
potentials. For instance, the shallow oscillating trap can be turned on immediately after the
solitons were created which leads to localizing the soliton at a certain position. Then by
switching on and off the oscillating trap the soliton can be moved from one point to the other.
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Appendix A. Exact solutions using a nonzero seed

A nontrivial seed solution can be easily obtained by substituting in equation (7) ψ(x, t) =
exp (h1(t) + ih2(x, t)), where h1(t) and h2(x, t) are real functions

ψ0(x, t) = A exp

[
γ̇ (t)

2
− i

4

(
4aA2 − 4eγ̇ (t)xk0 − 2k0

2

+ 4
∫

e2γ̇ (t)dt (−2aA2 + k0
2) + x2γ̈ (t)

)]
. (A.1)

Here A and k0 are arbitrary constants.
Solving the linear system (4) and (5) using the seed solution, equation (A.1), and then

substituting for ψ0(x, t), ψ1(x, t) and φ1(x, t) in the last equation, we obtain the following
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new exact solution of equation (7):

ψ(x, t) = η̇1/4e−iη̈x2/8η̇
{

Aeq1

+ 4λ1reiθ4+q2(2ic3A
√

ae2αη + c4q3e−2iθ1+�r

√
η̇x)(c3q

∗
3 e2αη − 2iA

√
ac4e−iθ3+�r

√
η̇x)/ [

c2
1�e2αη−�r

√
η̇x + c2

2�e−2αη+�r

√
η̇x − 4Ac1c2

√
a[(2λ1r − �r)(cos 2θ1 + cos θ3)

+ (�i − 2λ1r )(sin 2θ1 + sin θ3) + (sin 2θ1 + sin θ3)k0)
] }

, (A.2)

where

q1 = i[2A2a(2η − 1) + k0(k0(1 − 2η) + 2
√

η̇)x]/2,

q2 = −2αη − �
√

η̇x,

q3 = �i + k0 + i(�r + 2iλ1i − 2λ1r ),

θ1 = �rλ1rη − ((2λ1i + k0) −
√

η̇)�i/2,

θ2 = (
k2

0(1 − 2η) − 4�rλ1rη
)
/4 + 2A2a(1 − 2η)

+ 2�i(2λ1iη −
√

η̇x) + 2k0(�iη +
√

η̇x),

θ3 = (2�iλ1i − 2�rλ1r + �ik0)η −
√

η̇�ix,

θ4 = k0

√
η̇x +

(
2A2a − k2

0

)
(2η − 1)/2,

� = (�i − 2λ1i )
2 + (�r − 2λ1r )

2 + 4A2a + k0(2�i − 4λ1i + k0),

α = �rλ1i + �iλ1r + �rk0/2,

�r = Re[
√

(2λ1 − ik0)2 − 4A2a],

�i = Im[
√

(2λ1 − ik0)2 − 4A2a],

γ = �i + k0 + i(�r + 2iλ1i − 2λ1r ),

η(t) =
∫

e2γ̇ (t)dt,

and c1 and c2 are arbitrary constants. It should be noted that this is an exact solution of
equation (7) for any γ (t).

There are five arbitrary parameters in the general solution, namely k0, A, λ1, c1 and c2.
The first three parameters control the phase and amplitude of the seed solution which is part of
the general solution. The last two parameters control the amplitude and phase of the general
solution. The solitonic solutions represented by equation (A.2) are nonsingular for all x and
t since the denominator of this equation does not vanish. This can be easily deduced from
equation (20) where we see that the denominator of equation (A.2) is merely the amplitude of
φ1 and ψ1 that vanishes only if we have the trivial solution with c1 = c2 = 0.
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